Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
1.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496508

RESUMO

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

2.
Acta Neuropathol ; 147(1): 55, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472475

RESUMO

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Encéfalo/patologia , Proteínas tau/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Neurônios/patologia , Camundongos Transgênicos , Mamíferos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328211

RESUMO

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.

4.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38050082

RESUMO

Mixed pathologies are common in neurodegenerative disease; however, antemortem imaging rarely captures copathologic effects on brain atrophy due to a lack of validated biomarkers for non-Alzheimer's pathologies. We leveraged a dataset comprising antemortem MRI and postmortem histopathology to assess polypathologic associations with atrophy in a clinically heterogeneous sample of 125 human dementia patients (41 female, 84 male) with T1-weighted MRI ≤ 5 years before death and postmortem ordinal ratings of amyloid-[Formula: see text], tau, TDP-43, and [Formula: see text]-synuclein. Regional volumes were related to pathology using linear mixed-effects models; approximately 25% of data were held out for testing. We contrasted a polypathologic model comprising independent factors for each proteinopathy with two alternatives: a model that attributed atrophy entirely to the protein(s) associated with the patient's primary diagnosis and a protein-agnostic model based on the sum of ordinal scores for all pathology types. Model fits were evaluated using log-likelihood and correlations between observed and fitted volume scores. Additionally, we performed exploratory analyses relating atrophy to gliosis, neuronal loss, and angiopathy. The polypathologic model provided superior fits in the training and testing datasets. Tau, TDP-43, and [Formula: see text]-synuclein burden were inversely associated with regional volumes, but amyloid-[Formula: see text] was not. Gliosis and neuronal loss explained residual variance in and mediated the effects of tau, TDP-43, and [Formula: see text]-synuclein on atrophy. Regional brain atrophy reflects not only the primary molecular pathology but also co-occurring proteinopathies; inflammatory immune responses may independently contribute to degeneration. Our findings underscore the importance of antemortem biomarkers for detecting mixed pathology.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Masculino , Feminino , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Substância Cinzenta/patologia , Proteínas tau/metabolismo , Gliose/patologia , Atrofia/patologia , Amiloide , Sinucleínas , Proteínas de Ligação a DNA/metabolismo , Biomarcadores , Doença de Alzheimer/patologia
6.
Nat Commun ; 14(1): 6892, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898614

RESUMO

Extraction of α-Synuclein (αSyn) aggregates from Lewy body disease (LBD) brains has been widely described yet templated fibrillization of LB-αSyn often fails to propagate its structural and functional properties. We recently demonstrated that aggregates amplified from LB-αSyn (ampLB) show distinct biological activities in vitro compared to human αSyn preformed fibrils (hPFF) formed de novo. Here we compare the in vivo biological activities of hPFF and ampLB regarding seeding activity, latency in inducing pathology, distribution of pathology, inclusion morphology, and cell-type preference. Injection of ampLB into mice expressing only human αSyn (male Thy1:SNCA/Snca-/- mice) induced pathologies similar to those of LBD subjects that were distinct from those induced by hPFF-injection or developing spontaneously with aging. Importantly, αSyn aggregates in ampLB-injected Thy1:SNCA/Snca-/- mice maintained the unique biological and conformational features of original LB-αSyn. These results indicate that ampLB-injection, rather than conventional PFF-injection or αSyn overexpression, faithfully models key aspects of LBD.


Assuntos
Doença por Corpos de Lewy , Camundongos , Masculino , Humanos , Animais , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/metabolismo , Corpos de Lewy/metabolismo , Encéfalo/metabolismo , Envelhecimento
8.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37808727

RESUMO

The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden. We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously identified in AD. Disease - specific cell states represent molecular features of disease-specific glial-immune mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic targets by revealing shared and disease-specific cell states.

9.
Sci Transl Med ; 15(713): eabo6889, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703352

RESUMO

Tau pathogenesis is a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Although the events leading to initial tau misfolding and subsequent tau spreading in patient brains are largely unknown, traumatic brain injury (TBI) may be a risk factor for tau-mediated neurodegeneration. Using a repetitive TBI (rTBI) paradigm, we report that rTBI induced somatic accumulation of phosphorylated and misfolded tau, as well as neurodegeneration across multiple brain areas in 7-month-old tau transgenic PS19 mice but not wild-type (WT) mice. rTBI accelerated somatic tau pathology in younger PS19 mice and WT mice only after inoculation with tau preformed fibrils and AD brain-derived pathological tau (AD-tau), respectively, suggesting that tau seeds are needed for rTBI-induced somatic tau pathology. rTBI further disrupted axonal microtubules and induced punctate tau and TAR DNA binding protein 43 (TDP-43) pathology in the optic tracts of WT mice. These changes in the optic tract were associated with a decline of visual function. Treatment with a brain-penetrant microtubule-stabilizing molecule reduced rTBI-induced tau, TDP-43 pathogenesis, and neurodegeneration in the optic tract as well as visual dysfunction. Treatment with the microtubule stabilizer also alleviated rTBI-induced tau pathology in the cortices of AD-tau-inoculated WT mice. These results indicate that rTBI facilitates abnormal microtubule organization, pathological tau formation, and neurodegeneration and suggest microtubule stabilization as a potential therapeutic avenue for TBI-induced neurodegeneration.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Animais , Camundongos , Microtúbulos , Proteínas de Ligação a DNA , Encéfalo , Modelos Animais de Doenças , Excipientes , Camundongos Transgênicos
10.
Science ; 381(6656): eadd6696, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499037

RESUMO

Aggregation of tau into filamentous inclusions underlies Alzheimer's disease (AD) and numerous other neurodegenerative tauopathies. The pathogenesis of tauopathies remains unclear, which impedes the development of disease-modifying treatments. Here, by systematically analyzing human tripartite motif (TRIM) proteins, we identified a few TRIMs that could potently inhibit tau aggregation. Among them, TRIM11 was markedly down-regulated in AD brains. TRIM11 promoted the proteasomal degradation of mutant tau as well as superfluous normal tau. It also enhanced tau solubility by acting as both a molecular chaperone to prevent tau misfolding and a disaggregase to dissolve preformed tau fibrils. TRIM11 maintained the connectivity and viability of neurons. Intracranial delivery of TRIM11 through adeno-associated viruses ameliorated pathology, neuroinflammation, and cognitive impairments in multiple animal models of tauopathies. These results suggest that TRIM11 down-regulation contributes to the pathogenesis of tauopathies and that restoring TRIM11 expression may represent an effective therapeutic strategy.


Assuntos
Agregação Patológica de Proteínas , Tauopatias , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
J Alzheimers Dis Rep ; 7(1): 589-604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313492

RESUMO

Background: Apraxia of speech (AOS) is a core feature of nonfluent/agrammatic primary progressive aphasia (naPPA), but its precise characteristics and the prevalence of AOS features in spontaneous speech are debated. Objective: To assess the frequency of features of AOS in the spontaneous, connected speech of individuals with naPPA and to evaluate whether these features are associated with an underlying motor disorder such as corticobasal syndrome or progressive supranuclear palsy. Methods: We examined features of AOS in 30 patients with naPPA using a picture description task. We compared these patients to 22 individuals with behavioral variant frontotemporal dementia and 30 healthy controls. Each speech sample was evaluated perceptually for lengthened speech segments and quantitatively for speech sound distortions, pauses between and within words, and articulatory groping. We compared subgroups of naPPA with and without at least two features of AOS to assess the possible contribution of a motor impairment to speech production deficits. Results: naPPA patients produced both speech sound distortions and other speech sound errors. Speech segmentation was found in 27/30 (90%) of individuals. Distortions were identified in 8/30 (27%) of individuals, and other speech sound errors occurred in 18/30 (60%) of individuals. Frequent articulatory groping was observed in 6/30 (20%) of individuals. Lengthened segments were observed rarely. There were no differences in the frequencies of AOS features among naPPA subgroups as a function of extrapyramidal disease. Conclusion: Features of AOS occur with varying frequency in the spontaneous speech of individuals with naPPA, independently of an underlying motor disorder.

12.
medRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163045

RESUMO

Background: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.

13.
NPJ Parkinsons Dis ; 9(1): 74, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169750

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are progressive neurodegenerative diseases characterized by the accumulation of misfolded α-synuclein in the form of Lewy pathology. While most cases are sporadic, there are rare genetic mutations that cause disease and more common variants that increase incidence of disease. The most prominent genetic mutations for PD and DLB are in the GBA1 and LRRK2 genes. GBA1 mutations are associated with decreased glucocerebrosidase activity and lysosomal accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Previous studies have shown a link between this enzyme and lipids even in sporadic PD. However, it is unclear how the protein pathologies of disease are related to enzyme activity and glycosphingolipid levels. To address this gap in knowledge, we examined quantitative protein pathology, glucocerebrosidase activity and lipid substrates in parallel from 4 regions of 91 brains with no neurological disease, idiopathic, GBA1-linked, or LRRK2-linked PD and DLB. We find that several biomarkers are altered with respect to mutation and progression to dementia. We found mild association of glucocerebrosidase activity with disease, but a strong association of glucosylsphingosine with α-synuclein pathology, irrespective of genetic mutation. This association suggests that Lewy pathology precipitates changes in lipid levels related to progression to dementia.

14.
Brain Commun ; 5(3): fcad147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223129

RESUMO

Despite well-articulated hypotheses of spreading pathology in animal models of neurodegenerative disease, the basis for spreading neurodegenerative pathology in humans has been difficult to ascertain. In this study, we used graph theoretic analyses of structural networks in antemortem, multimodal MRI from autopsy-confirmed cases to examine spreading pathology in sporadic frontotemporal lobar degeneration. We defined phases of progressive cortical atrophy on T1-weighted MRI using a published algorithm in autopsied frontotemporal lobar degeneration with tau inclusions or with transactional DNA binding protein of ∼43 kDa inclusions. We studied global and local indices of structural networks in each of these phases, focusing on the integrity of grey matter hubs and white matter edges projecting between hubs. We found that global network measures are compromised to an equal degree in patients with frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions compared to healthy controls. While measures of local network integrity were compromised in both frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, we discovered several important characteristics that distinguished between these groups. Hubs identified in controls were degraded in both patient groups, but degraded hubs were associated with the earliest phase of cortical atrophy (i.e. epicentres) only in frontotemporal lobar degeneration with tau inclusions. Degraded edges were significantly more plentiful in frontotemporal lobar degeneration with tau inclusions than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, suggesting that the spread of tau pathology involves more significant white matter degeneration. Weakened edges were associated with degraded hubs in frontotemporal lobar degeneration with tau inclusions more than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, particularly in the earlier phases of the disease, and phase-to-phase transitions in frontotemporal lobar degeneration with tau inclusions were characterized by weakened edges in earlier phases projecting to diseased hubs in subsequent phases of the disease. When we examined the spread of pathology from a region diseased in an earlier phase to physically adjacent regions in subsequent phases, we found greater evidence of disease spreading to adjacent regions in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions than in frontotemporal lobar degeneration with tau inclusions. We associated evidence of degraded grey matter hubs and weakened white matter edges with quantitative measures of digitized pathology from direct observations of patients' brain samples. We conclude from these observations that the spread of pathology from diseased regions to distant regions via weakened long-range edges may contribute to spreading disease in frontotemporal dementia-tau, while spread of pathology to physically adjacent regions via local neuronal connectivity may play a more prominent role in spreading disease in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions.

15.
Alzheimers Dement ; 19(10): 4662-4674, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37002928

RESUMO

BACKGROUND: The cis-conformer of tau phosphorylated at threonine-231 (cis-pT231 tau) is hypothesized to contribute to tauopathies. PNT001 is a humanized, monoclonal antibody that recognizes cis-pT231 tau. PNT001 was characterized to assess clinical development readiness. METHODS: Affinity and selectivity were assessed by surface plasmon resonance and enzyme-linked immunosorbent assay. Immunohistochemistry (IHC) was performed with brain sections from human tauopathy patients and controls. Real-time quaking-induced conversion (RT-QuIC) was used to assess whether PNT001 reduced tau seeds from Tg4510 transgenic mouse brain. Murine PNT001 was evaluated in vivo in the Tg4510 mouse. RESULTS: The affinity of PNT001 for a cis-pT231 peptide was 0.3 to 3 nM. IHC revealed neurofibrillary tangle-like structures in tauopathy patients with no detectable staining in controls. Incubation of Tg4510 brain homogenates with PNT001 lowered seeding in RT-QuIC. Multiple endpoints were improved in the Tg4510 mouse. No adverse findings attributable to PNT001 were detected in Good Laboratory Practice safety studies. DISCUSSION: The data support clinical development of PNT001 in human tauopathies.


Assuntos
Tauopatias , Proteínas tau , Humanos , Camundongos , Animais , Proteínas tau/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Emaranhados Neurofibrilares , Anticorpos Monoclonais Humanizados
17.
Brain ; 146(6): 2557-2569, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36864661

RESUMO

Pathologies that are causative for neurodegenerative disease (ND) are also frequently present in unimpaired, older individuals. In this retrospective study of 1647 autopsied individuals, we report the incidence of 10 pathologies across ND and normal ageing in attempt to clarify which pathological combinations are disease-associated and which are ageing-related. Eight clinically defined groups were examined including unimpaired individuals and those with clinical Alzheimer's disease, mixed dementia, amyotrophic lateral sclerosis, frontotemporal degeneration, multiple system atrophy, probable Lewy body disease or probable tauopathies. Up to seven pathologies were observed concurrently resulting in a heterogeneous mix of 161 pathological combinations. The presence of multiple additive pathologies associated with older age, increasing disease duration, APOE e4 allele and presence of dementia across the clinical groups. Fifteen to 67 combinations occurred in each group, with the unimpaired group defined by 35 combinations. Most combinations occurred at a <5% prevalence including 86 that were present in only one or two individuals. To better understand this heterogeneity, we organized the pathological combinations into five broad categories based on their age-related frequency: (i) 'Ageing only' for the unimpaired group combinations; (ii) 'ND only' if only the expected pathology for that individual's clinical phenotype was present; (iii) 'Other ND' if the expected pathology was not present; (iv) 'ND + ageing' if the expected pathology was present together with ageing-related pathologies at a similar prevalence as the unimpaired group; and (v) 'ND + associated' if the expected pathology was present together with other pathologies either not observed in the unimpaired group or observed at a greater frequency. ND only cases comprised a minority of cases (19-45%) except in the amyotrophic lateral sclerosis (56%) and multiple system atrophy (65%) groups. The ND + ageing category represented 9-28% of each group, but was rare in Alzheimer's disease (1%). ND + associated combinations were common in Alzheimer's disease (58%) and Lewy body disease (37%) and were observed in all groups. The Ageing only and Other ND categories accounted for a minority of individuals in each group. This observed heterogeneity indicates that the total pathological burden in ND is frequently more than a primary expected clinicopathological correlation with a high frequency of additional disease- or age-associated pathologies.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/patologia , Esclerose Amiotrófica Lateral/patologia , Estudos Retrospectivos
18.
Nat Neurosci ; 26(2): 213-225, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690898

RESUMO

Cell-to-cell transmission and subsequent amplification of pathological proteins promote neurodegenerative disease progression. Most research on this has focused on pathological protein seeds, but how their normal counterparts, which are converted to pathological forms during transmission, regulate transmission is less understood. Here we show in cultured cells that phosphorylation of soluble, nonpathological α-synuclein (α-Syn) at previously identified sites dramatically affects the amplification of pathological α-Syn, which underlies Parkinson's disease and other α-synucleinopathies, in a conformation- and phosphorylation site-specific manner. We performed LC-MS/MS analyses on soluble α-Syn purified from Parkinson's disease and other α-synucleinopathies, identifying many new α-Syn post-translational modifications (PTMs). In addition to phosphorylation, acetylation of soluble α-Syn also modified pathological α-Syn transmission in a site- and conformation-specific manner. Moreover, phosphorylation of soluble α-Syn could modulate the seeding properties of pathological α-Syn. Our study represents the first systematic analysis how of soluble α-Syn PTMs affect the spreading and amplification of pathological α-Syn, which may affect disease progression.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional
19.
Alzheimers Dement ; 19(5): 1775-1784, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239248

RESUMO

INTRODUCTION: Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD: Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS: Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION: Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS: A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/genética , Neurogranina , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano
20.
Ann Clin Transl Neurol ; 10(1): 18-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36518085

RESUMO

OBJECTIVE: To determine if plasma tau phosphorylated at threonine 181 (p-tau181) distinguishes pathology-confirmed Alzheimer's disease (AD) from normal cognition (NC) adults, to test if p-tau181 predicts cognitive and functional decline, and to validate findings in an external cohort. METHODS: Thirty-one neuropathology-confirmed AD cases, participants with clinical diagnoses of mild cognitive impairment (MCI, N = 91) or AD dementia (N = 64), and NC (N = 241) had plasma collected at study entry. The clinical diagnosis groups had annual cognitive (Mini-Mental State Examination, MMSE) and functional (Clinical Dementia Rating Scale, CDR) measures. NC (N = 70), MCI (N = 75), and AD dementia (N = 50) cases from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were used as a validation cohort. Plasma p-tau181 was measured using the Quanterix SiMoA HD-X platform. RESULTS: Plasma p-tau181 differentiated pathology-confirmed AD from NC with negative amyloid PET scans with an AUC of 0.93. A cut point of 3.44 pg/mL (maximum Youden Index) had a sensitivity of 0.77, specificity of 0.96. p-Tau181 values above the cut point were associated with the faster rate of decline in MMSE in AD dementia and MCI and a shorter time to a clinically significant functional decline in all groups. In a subset of MCI cases from ADNI, p-tau181 values above the cut point associated with faster rate of decline in MMSE, and a shorter time to a clinically significant functional decline and conversion to dementia. INTERPRETATION: Plasma p-tau181 differentiates AD pathology cases from NC with high accuracy. Higher levels of plasma p-tau181 are associated with faster cognitive and functional decline.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Doença de Alzheimer/patologia , Proteínas tau , Peptídeos beta-Amiloides , Biomarcadores , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...